

Architectural Considerations in Delivering a Balanced Linux Cluster

Douglas Doerfler Scalable Systems Integration Dept. Sandia National Labs

Balance of the Entire System

- What is Cplant?
- Balance with respect to:
 - -User Needs
 - -Research & Development Needs
 - -System Administration & Operations
 - -Management Tools
 - -Integration & Test

What is Cplant?

Cplant[™] is a concept

- Computational capacity at a low cost
- MPPs using commodity components

Cplant™ is multiple efforts

- Scalable System Software
- Message Passing Protocols
- Integration and Testing
- Scalable System Management Tools

Cplant[™] is a software package

- Downloadable Open Source
- Unlimited Scale Inc.:
 Commercial License

Cplant[™] is a Philosophy

- Models ASCI Red Architecture
- MPP "Look and Feel"
- Preserve Application Code Base

CPlant™

- "Scale Down" Design
- Leverage System Support Resources

NM clusters

- Antarctica: (FY00/01)
 Four independent heads plus a swinging center section, 2,528 total nodes
- Siberia (reapplied): 592 nodes, (FY99)
- Alaska: 272 nodes (FY98)
- Barrow (retired): 96 nodes (FY98)

CA clusters

- Delmar: 384 nodes (FY00/01)
- Zenia: 32 nodes (FY00)
- Carmel: 128 nodes (FY99)
- Asilomar-SON: 64 nodes (FY97)
- Asilomar-SRN: 64 nodes (FY97) ia National Laboratories

Cplant is Multi-Discipline

Collaborations

- DOE SciDAC Program
- University of New Mexico
- Ohio State
- Syracuse
- University of Virginia
- University of Texas
- Mississippi State
- Northwestern
- Cal Tech/JPL

Supporting System Software Efforts

- Unlimited Scale Inc.
- MPI Software Technology
- Etnus Inc.
- Kuck & Associates/Pallas

Applications

- ALEGRA
- SALINAS
- PRONTO
- CTH
- LAMMPS
- PARADYN
- LADERA
- QUEST

• ...

Multi-Program

- DOE DP
- DOE Non-DP
- WFO
- Research Foundation
- LDRD

Antarctica

Antarctica Status

- West Head (SON): Deployed March '01 (80 nodes), Nov '01 (256 nodes)
 - 96 Compaq DS10L (Slate):
 466Mhz EV6 Alpha CPU, 1GByte Memory, Myrinet 2000
 - 160 Compaq XP1000:
 500Mhz EV6 Alpha CPU, 1GByte Memory, Myrinet 2000
 - 24 Compaq XP1000 Service and I/O nodes
- Center Section (Swings Between Heads): Deployed May '01 (1024 nodes), Sept '01 (1536 nodes)
 - 1536 Compaq DS10L:
 466Mhz EV6 Alpha CPU, 256MByte Memory, Myrinet 1280
- Ross Head (SRN): Deployed Nov '01
 - 256 Compaq DS10L (Slate) Compute Nodes:
 600Mhz EV67 Alpha CPU, 1GByte Memory, Myrinet 2000
 - 24 Compaq XP1000 Service and I/O nodes
- Ronne Head (SCN): Deployed March '02
 - 256 Compaq XP1000 Compute Nodes:
 500Mhz EV6 Alpha CPU, 1GByte Memory, Myrinet 1280
 - 24 Compaq XP1000 Service and I/O nodes

User Needs Vs. Development Needs

- An eclectic mix of users
 - Three types of networks at Sandia
 - An Institutional Resource: Post Docs to Plimpton
- An eclectic mix of developers
 - Research Platform
 - Development Platform
 - Integration & Test
 - System Administrators

Production Challenges

Customers

- Cplant is being positioned as an institutional resource
 - Wide variety of user expertise, codes, ...
 - High profile exposure
- Early adopters turned off by the rough edges. As we get better how do we gain back their confidence?
- Users expect support on the level of commercial machines, especially ASCI Red and White
- Bad news travels at the speed of light.
- Good news doesn't travel at all!
- We're working on our PR and marketing departments!

Development Challenges

- Availability: Users vs. Those \$%*@ Developers
 - How do we balance the needs of the users & increase the quality of the product?
 - Debug scalability problems
 - Continue our fundamental research efforts
 - Scheduled Maintenance
- Presently
 - 2 days every 2 weeks for System Time
 - User dedicated time upon request

Balanced Level of Effort

- System Administration and Operations
 - Day to day management
 - cplant-help, email help line
 - Scheduled maintenance
 - Problem resolution
 - Computational Scientists
 - Notifications
- Integration and Development
 - Software support
 - Hardware problem resolution
 - SW and HW diagnostic development

Ongoing Support Level of Effort

- Department 9338 (7 FTE ?)
 - Operations, Security, Computational Scientists
- Department 9223 (7 FTE)
 - Run Time Software Dev. and Support, Computational Scientist
- Department 9224 (4 FTE)
 - Integration & Test, Cluster Management Tool Dev. and Support
- Compaq
 - Professional Services (3 FTE)
 - Hardware diagnosis and repair (HW Contract)
 - Compiler & Operating System Support (SW License)
- High Performance Technologies Inc. (1.5 FTE)
 - Integration, Diagnostics, Cluster Management Tools

Cplant & ASCI Red Usage by Org (Dec '01 thru Feb '02)

The Cluster Management Challenge

- Operational Staff w/o in-depth machine knowledge
- Heterogenous mix of hardware
 - Compute, Service, I/O, Power, Terminals, Networks, ...
- Classification switching
- Scaling Issues:
 - 1,000's of nodes
 - Boot/Reboot time
 - Easily target a specific device
- Runtime independence
- Portability & Extensibility

Some requirements

- Support Disk-less AND Disk-full nodes
- Support multiple software environments at the node level
- Support switching between classified and unclassified networks
- Support a hierarchical administrative (diagnostic) network
- Separate management tools and runtime environment.
- Manage cluster as a single system
 - Doesn't mean single system image
- Do not require kernel modifications
- Do not effect performance of compute nodes
- Be usable by cluster no-experts
- Boot in less than half an hour
- Any more?

What we don't know

- What type of devices we will use in the future
 - What capabilities
- How we will connect these devices together in the future
- How these clusters will be used in the future
- Can we design something now that we won't have to throw away?

What should be provided?

- power and boot control
- General health of device (again not just nodes)
 - Nodes
 - Up or down?
 - Interface status (all interfaces)
 - Memory errors
 - Temp
 - Fans
 - Other devices
 - Any info that is important to Reliability Availability Serviceability
- Anything that any device needs to perform their function
 - Firmware, kernels, root-file-system....
- Single point of control
 - Could be many single points?
 - That single point could move?

Sandia's Approach

- Don't be focused ONLY on Sandia's needs
- Don't make assumptions like:
 - What devices or how they are connected
- First effort was diskless
 - We needed it for switching
 - Many benefits anyway
- Use what we can from open source
 - -Return what we create

Cplant Cluster Management Tools

Management Tools Summary

- Many clusters installed at Sandia and HPTi
 - All different in either device make up, topology or both
 - Largest 1,861 nodes, single hard-drive
- We believe the toolset is flexible enough to target a wider audience than Cplant
- Open source model similar to our runtime software distributions
 - But independent of the runtime

Integration & Test

(How do you verify that the 1,000's of components in the system operate per specification and are connected correctly?)

- Integration and Test have become key elements of our cluster effort
- Cluster Integration Toolkit (CIToolkit)
 - A collaborative effort between Sandia & HPTi
 - Functional tests for every HW component
 - Connection verification
 - Stress tests, primarily memory and network
 - Topology verification
- System Software Installation (OS and Runtime)
 - Stress tests
 - Algorithm testing
 - Friendly Users

Center Section Hardware Reports

Ross Hardware Reports

West Hardware Reports

☐ Pre-Release ☐ Post-Release

Ronne Hardware Reports

☐ Pre-Release ☐ Post-Release

Web site

http://www.cs.sandia.gov/cplant

Open Source

http://www.cs.sandia.gov/cplant/download.html

Recent papers

http://www.cs.sandia.gov/cplant/papers

